Note: you are viewing the archived version of our website. Click here to go to our new site.

Component- and alloy-specific modeling for evaluating aluminium recycling strategies for vehicles

Title
Component- and alloy-specific modeling for evaluating aluminium recycling strategies for vehicles
Author(s)
Roja Modaresi
Amund N. Løvik
Daniel B. Müller
Year
2014
Type
Journal Article
Source
JOM - The Journal for Minerals, Metals & Materials Society (TMS), Volume 66, Issue 11
DOI
10.1007/s11837-014-0900-8
Abstract
Previous studies indicated that the availability of mixes hredded aluminum scrap from end-of-life vehicles (ELV) is likely to surpass the capacity of secondary castings to absorb this type of scrap, which could lead to a scrap surplus unless suitable interventions can be identified and implemented. However, there is a lack of studies analyzing potential solutions to this problem, among others, because of a lack of component- and alloy-specific information in the models. In this study, we developed a dynamic model of aluminum in the global vehicle stock (distinguishing 5 car segments, 14 components, and 7 alloy groups). The forecasts made up to the year 2050 for the demand for vehicle components and alloy groups, for the scrap supply from discarded vehicles, and for the effects of different ELV management options. Furthermore, we used a source-sink diagram to identify alloys that could potentially serve as alternative sinks for the growing scrap supply. Dismantling the relevant components could remove up to two-thirds of the aluminum from the ELV stream. However, the use of these components for alloy-specific recycling is currently limited because of the complex composition of components (mixed material design and applied joining techniques), as well as provisions that practically prevent the production of safety-relevant cast parts from scrap. In addition, dismantling is more difficult for components that are currently penetrating rapidly. Therefore, advanced alloy sorting seems to be a crucial step that needs to be developed over the coming years to avoid a future scrap surplus and prevent negative energy use and emission consequences.
More Information
http://dx.doi.org/10.1007/s11837-014-0900-8

Tags

Back Incorrect or incomplete information? Click here to report this.

This website provides meta data on papers and other publications, with links to the original publications. These papers may be copyrighted or otherwise protected by the publishing journal or author. Some journals provide open access to their publications. When possible we will try to include abstracts and more details for open access publications. For more details, follow the link to the original document and/or contact the publisher/author.